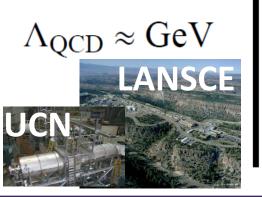
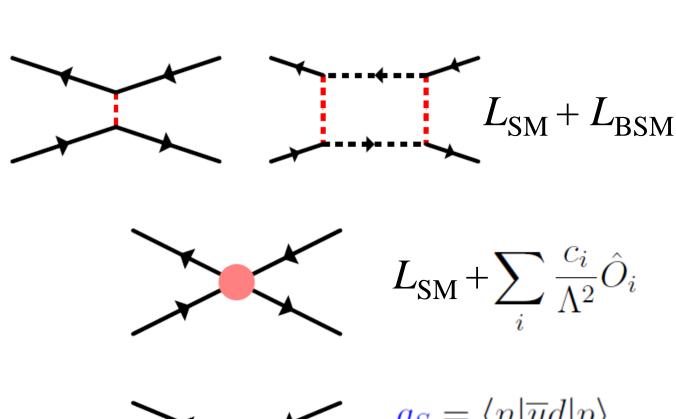


Fermí Theory of Beta Decay


- § Four-fermion interaction explained beta decay before electroweak theory was proposed
- New operators in effective low-energy theories
- § Electroweak theory adds 3 vector bosons
 - \gg W and Z bosons directly detected later at CERN

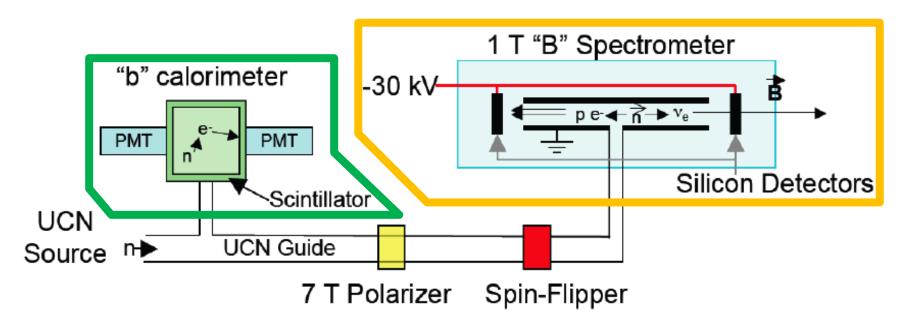


What You See/How You Look

 $M_{W,Z}$

$$g_S = \langle n | \overline{u}d | p \rangle$$

$$g_T = \langle n | \overline{u}\sigma_{\mu\nu}d | p \rangle$$



Neutron Beta Decay

§ Experiments measure the total neutron decay rate

$$d\Gamma \propto F(E_e) \left[1 + a \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} + A \frac{\vec{\sigma_n} \cdot \vec{p_e}}{E_e} + b \frac{m_e}{E_e} \right] + \left(B_0 + B_1 \frac{m_e}{E_e} \right) \frac{\vec{\sigma_n} \cdot \vec{p_\nu}}{E_\nu} + \cdots \right]$$

Within the Standard Model, a and A are $O(10^{-1})$, B_0 is O(1), b and B_1 are $O(10^{-3})$

BSM Interactions

§ Theoretically, b and B_1 are related to new interactions: the scalar and tensor

$$H_{\text{eff}} = G_F \left(J_{V-A}^{\text{lept}} \times J_{V-A}^{\text{quark}} + \sum_{i} \varepsilon_{i}^{\text{BSM}} \hat{O}_{i}^{\text{lept}} \times \hat{O}_{i}^{\text{quark}} \right)$$

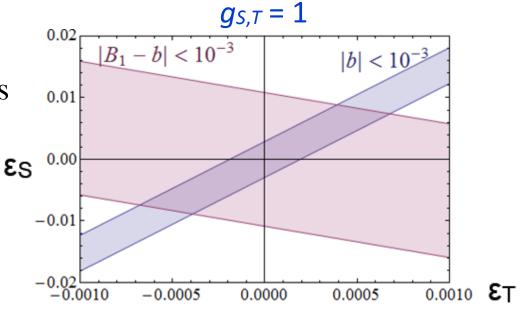
$$\hat{O}_S = \overline{u}d \times \overline{e}(1 - \gamma_5)\nu_e \qquad \to g_S = \langle n|\overline{u}d|p\rangle$$

$$\hat{O}_T = \overline{u}\sigma_{\mu\nu}d \times \overline{e}\sigma^{\mu\nu}(1 - \gamma_5)\nu_e \quad \to g_T = \langle n|\overline{u}\sigma_{\mu\nu}d|p\rangle$$

- $\approx \varepsilon_S$ and ε_T are related to the masses of the new TeV-scale particles
- \gg ... but the unknown coupling constants $g_{S,T}$ are needed
- These are nonperturbative functions of the neutron structure, described by quantum chromodynamics (QCD)

Physics Program

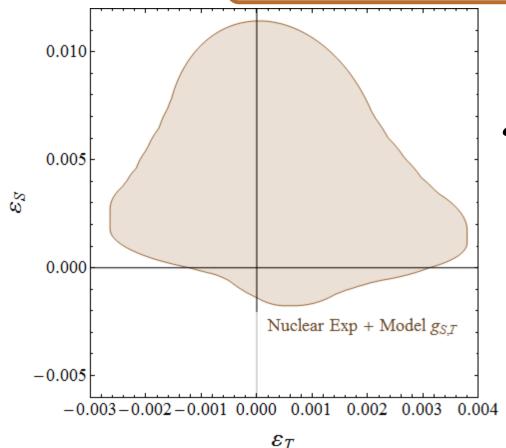
§ Given precision $g_{S,T}$ and b, B_1 , we can predict possible new particles


UCNs by 2013
$$b = f_b (\varepsilon_{S,T} g_{S,T})$$

$$B_1 = f_B (\varepsilon_{S,T} g_{S,T})$$

Precision LQCD input $(m_{\pi} \approx 140 \text{ MeV}, a \rightarrow 0)$

ε_{S} and ε_{T}

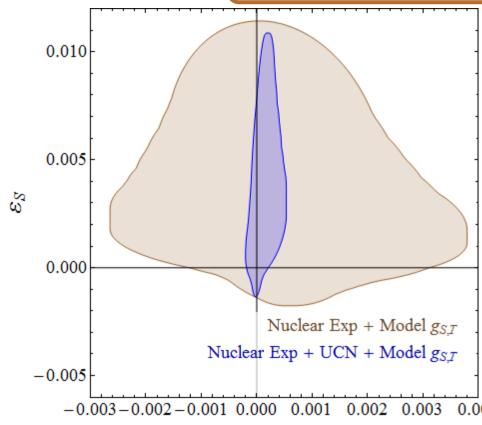

Solve the scale of particles mediating new forces

Current Constraints

§ Given precision $g_{S,T}$ and O_{BSM} , predict new-physics scales

Nuclear Exp.
$$O_{BSM} = f_O(\varepsilon_{S,T} g_{S,T})$$
 Model input

$$\varepsilon_{S,T} \propto \Lambda_{S,T}^{-2}$$


- Nuclear beta decays
 - $0^+ \longrightarrow 0^+$ transitions
 - β asym in Gamow-Teller ⁶⁰Co
 - polarization ratio between
 Fermi and GT in ¹¹⁴In
 - positron polarization in polarized ¹⁰⁷In
 - β - ν correlation parameter a

Reach of UCN Experiments

§ Given precision $g_{S,T}$ and O_{BSM} , predict new-physics scales

New UCN Exp.
$$O_{BSM} = f_O(\varepsilon_{S,T} g_{S,T})$$
 Model input

 ε_T

$$\varepsilon_{S,T} \propto \Lambda_{S,T}^{-2}$$

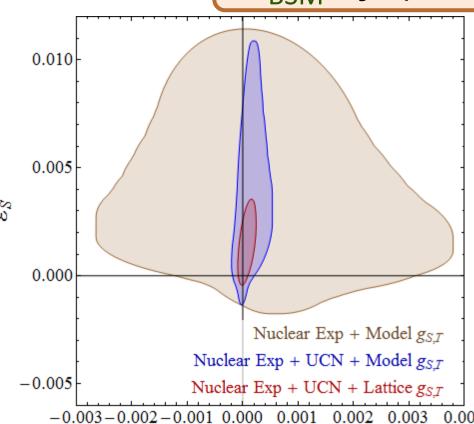
LANL UCN neutron decay exp't

$$d\Gamma \propto F(E_e) \left[1 + \frac{b \frac{m_e}{E_e}}{E_e} + \left(B_0 + B_1 \frac{m_e}{E_e} \right) \frac{\vec{\sigma}_n \cdot \vec{p}_\nu}{E_\nu} + \cdots \right]$$

Expect by 2013:

$$|B_1 - b|_{\text{BSM}} < 10^{-3}$$

 $|b|_{\text{BSM}} < 10^{-3}$


-0.003-0.002-0.001 0.000 0.001 0.002 0.003 0.004 Similar proposal at ORNL by 2015

Crucial Role of Theory

§ Given precision $g_{S,T}$ and O_{BSM} , predict new-physics scales

New UCN Exp. $O_{\text{BSM}} = f_0(\mathcal{E}_{S,T} g_{S,T})$ Precision LQCD input $(m_{\pi} \to 140 \text{ MeV}, a \to 0)$

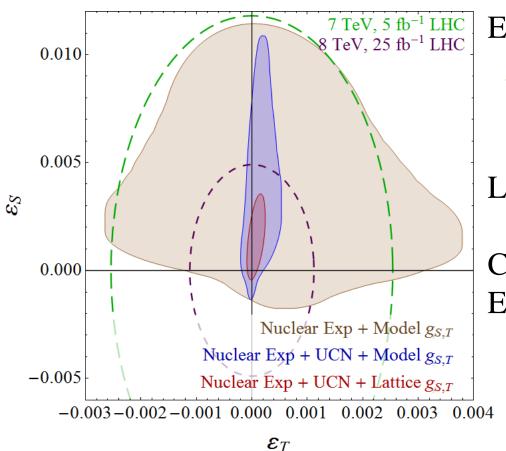
 ε_T

$$\varepsilon_{S,T} \propto \Lambda_{S,T}^{-2}$$

LANL UCN neutron decay exp't

$$d\Gamma \propto F(E_e) \left[1 + \frac{b m_e}{E_e} + \left(B_0 + B_1 \frac{m_e}{E_e} \right) \frac{\vec{\sigma}_n \cdot \vec{p}_\nu}{E_\nu} + \cdots \right]$$

Expect by 2013:


$$|B_1 - b|_{\text{BSM}} < 10^{-3}$$

 $|b|_{\text{BSM}} < 10^{-3}$

-0.003-0.002-0.001 0.000 0.001 0.002 0.003 0.004 Similar proposal at ORNL by 2015

High-Energy Constraints

§ Constraints from high-energy experiments? LHC current bounds and near-term expectation

Estimated though effective L

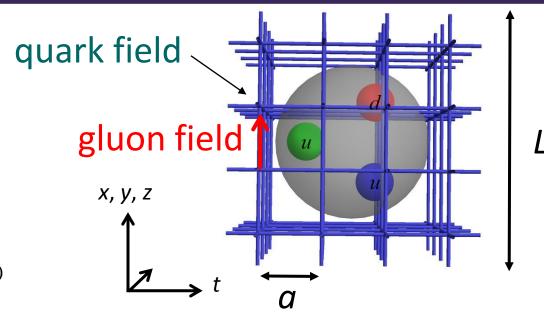
$$\mathcal{L} = -\frac{\eta_S}{\Lambda_S^2} V_{ud}(\overline{u}d)(\overline{e}P_L\nu_e)$$
$$-\frac{\eta_T}{\Lambda_T^2} V_{ud}(\overline{u}\sigma^{\mu\nu}P_Ld)(\overline{e}\sigma_{\mu\nu}P_L\nu_e)$$

Looking at high transverse mass in ev+X channel

Compare with *W* background Estimated 90% C.L. constraints on

$$\boldsymbol{\varepsilon}_{S,T} \propto \Lambda_{S,T}^{-2}$$

HWL, 1112.2435; 1109.2542 T. Bhattacharya et al, 1110.6448

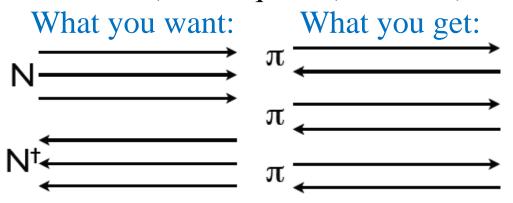

Lattice QCD Progress

§ Lattice uncertainties:

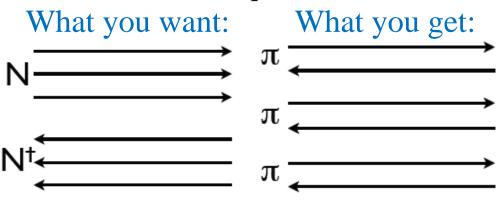
- Statistical noise
- **ॐ** Unphysical scales *a*, *L*
- \Rightarrow Extrapolation to M_{π}

§ Computational costs

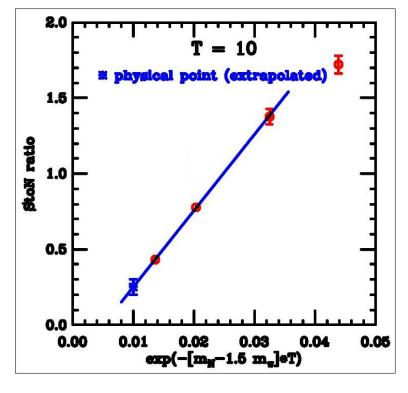
 \Rightarrow Scaling: $a^{-(5-6)}$, L^5 , $M_{\pi}^{-(2-4)}$



- § Most major 2+1-flavor gauge ensembles: M_{π} < 200 MeV
 - Now including physical pion-mass ensembles
- § Charm dynamics: 2+1+1-flavor gauge ensembles
 - **≫** MILC (HISQ), ETMC (TMW)
- § Pion-mass extrapolation $M_{\pi} \rightarrow (M_{\pi})_{phys}$ (Bonus products: low-energy constants)

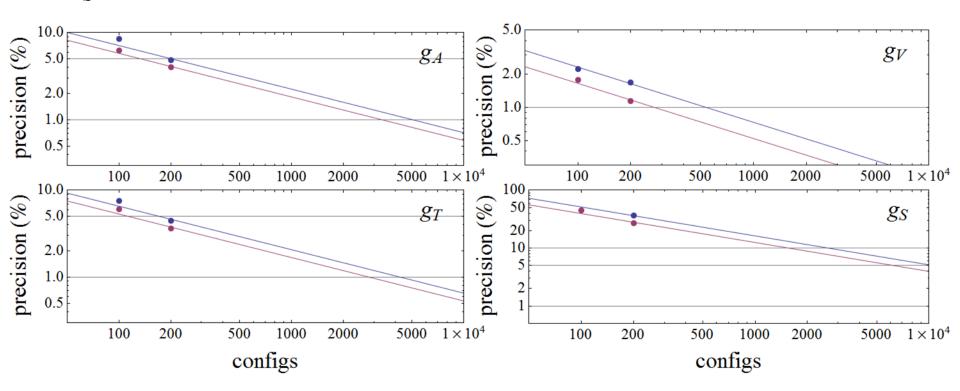

The Trouble with Nucleons

- § Difficulties in Euclidean space
- § Exponentially worse signal-to-noise ratios
 - \sim Consider a baryon correlator $C = \langle O \rangle = \langle qqq(t) \bar{q}\bar{q}\bar{q}(0) \rangle$
 - **⋄** Variance (noise squared) of $C \propto \langle O^{\dagger}O \rangle \langle O \rangle^2$


The Trouble with Nucleons

- § Difficulties in Euclidean space
- § Exponentially worse signal-to-noise ratios
 - \sim Consider a baryon correlator $C = \langle O \rangle = \langle qqq(t) \bar{q}\bar{q}\bar{q}(0) \rangle$
 - **⋄** Variance (noise squared) of $C \propto \langle O^{\dagger}O \rangle \langle O \rangle^2$

- Noise falls as $e^{-(3/2)m_{\pi}t}$
- Problem worsens with: increasing baryon number decreasing quark (pion) mass

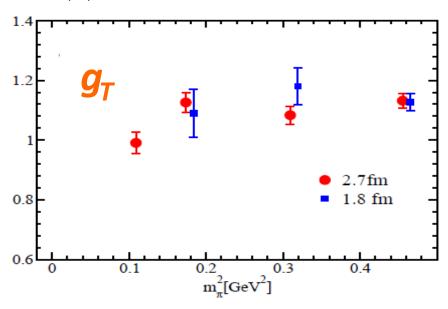


Statistical Uncertainty

§ Targeted statistical on charges: 2% estimation

Other sources of error: 8% (NPR + continuum extrap. + mixed sys.)

 $\gg g_S$ would be most challenging


Systematic Uncertainties

§ Chiral extrapolation suffers biggest systematic uncertainty

- > Huge obstacle to precision measurement
- ➢ Issues: validity of XPT over the range of pion masses used, convergence, SU(3) vs. SU(2) flavor, etc.
- § Remaining systematics: finite-volume effects
 - Seems pretty well controlled

$$m_{\pi}L \gtrsim 4$$

RBC/UKQCD arXiv:1003.3387[hep-lat]

§ Solutions

- > Include the physical pion mass in the calculation
- \triangleright Extrapolate to the continuum limit (use multiple a)

PNDME Roadmap

Precision Neutron-Decay Matrix Elements (2010–)

http://www.phys.washington.edu/users/hwlin/pndme/index.xhtml

Tanmoy Bhattacharya

Rajan Gupta

HWL (PI)

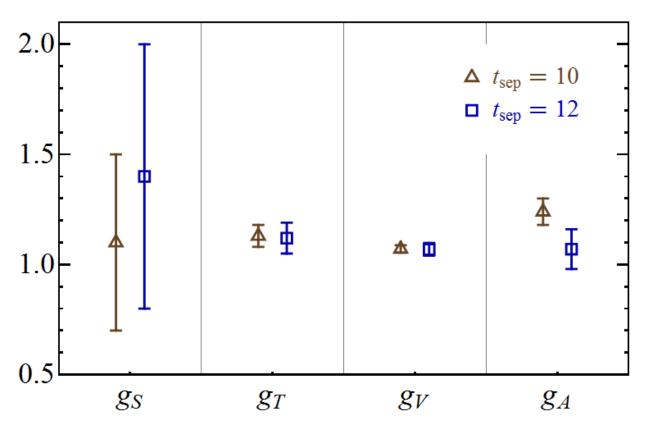
Saul Cohen

§ Plan

> MILC HISQ (140-MeV π available)

≫ Jan. 1 – Jun. 30, 2011 (USQCD)

Apr. 1, 2011 (Teragrid 8M SUs)

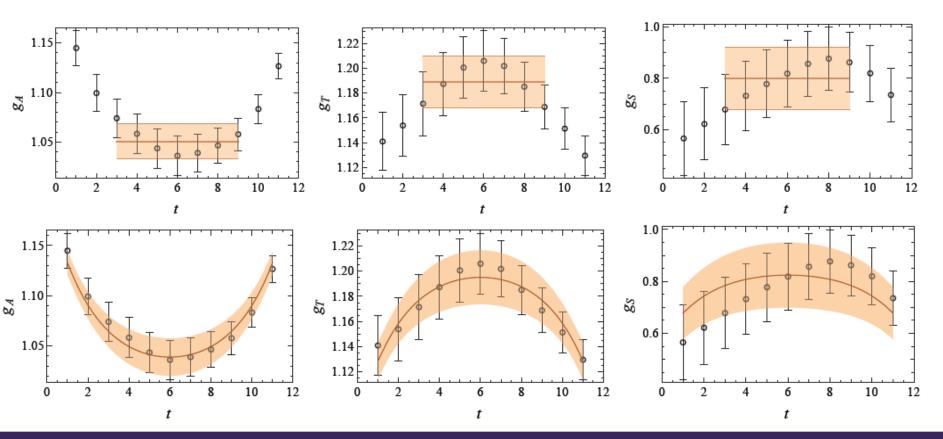

≫ Jul. 1− (USQCD), Dec. (NERSC)

№ 10% within 2 years
O(1%) in 3–4 years

	7 (110311 303CP11					
	a(fm)	m_l/m_s	Lattice	$m_{\pi}L$	$m_{\pi}(\mathrm{MeV})$	
	0.15	1/5	$16^{3} \times 48$	3.78	306	
	0.15	1/10	$24^{3} \times 48$	3.99	217	
	0.12	1/5	$24^{3} \times 64$	4.54	309	
U	0.12	1/10	$32^{3} \times 64$	4.29	221	
	0.12	1/27	$48^{3} \times 64$	4.08	140	
	0.09	1/5	32 ³ × 96	4.50	314	
	0.09	1/10	$48^{3} \times 96$	4.77	222	
	0.09	1/27	$64^{3} \times 96$	3.66	129	
	0.06	1/5	$48^{3} \times 144$	4.51	315	
	0.06	1/10	$64^{3} \times 144$	4.25	227	

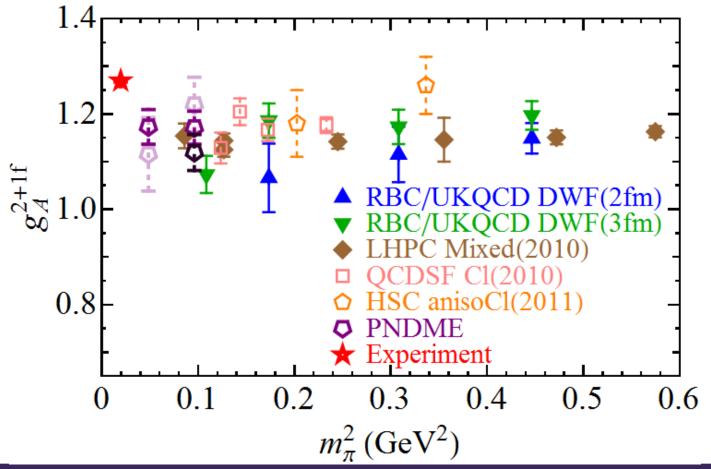
Excited-State Contamination

§ Explore optimal smearing parameters and multiple source-sink separations

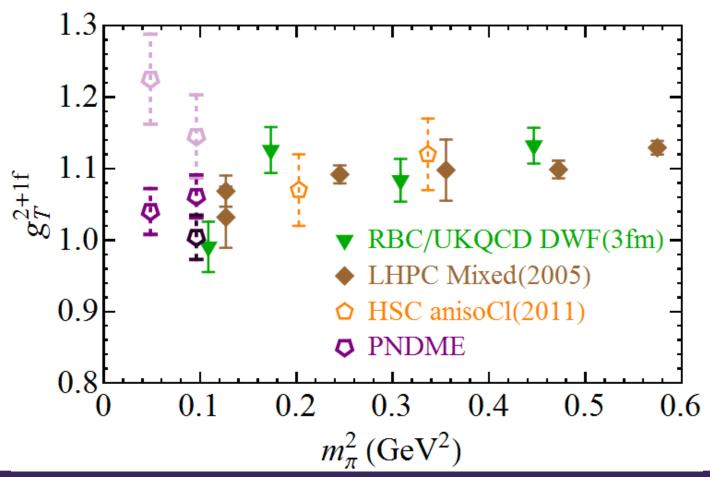


§ Analyze the three-point function including excited state

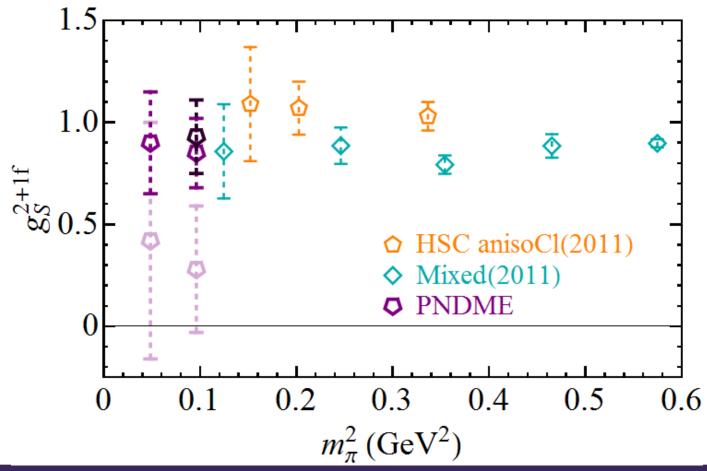
Excited-State Contamination


- § Explore optimal smearing parameters and multiple source-sink separations (0.96—1.44fm)
- § Analyze the three-point function including excited state

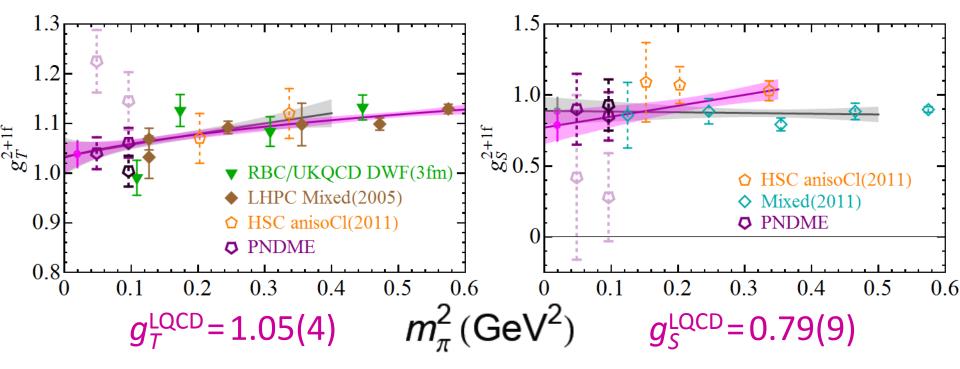
Isovector Axial Charge


§ Our preliminary numbers and world N_f = 2 + 1 values $\approx a = 0.06$, 0.09, 0.12 fm, 220- and 310-MeV pion

Isovector Tensor Charge

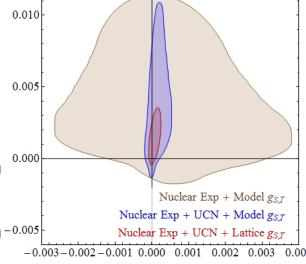

§ Our numbers (unrenormalized) and other N_f = 2 + 1 values $\approx a = 0.06$, 0.09, 0.12 fm, 220- and 310-MeV pion

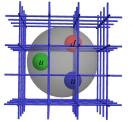
Isovector Scalar Charge

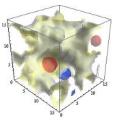

§ Our numbers (unrenormalized) and other N_f = 2 + 1 values § g_S becomes much noisier at light pion mass

Preliminary Results

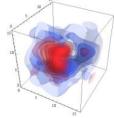
- § Tensor charge: the zeroth moment of transversity
 - ≈ Probed through SIDIS: $g_T(Q^2=0.8 \text{ GeV}^2)=0.77^{+0.18}_{-0.24}$
 - **≫** Model estimate 0.8(4)
- § Scalar charge $\langle n | \bar{u}d | p \rangle$ Prior model estimate: $1 \ge g_S \ge 0.25$


HWL, 1112.2435; 1109.2542




Summary


The name of the game is precision


- § The precision frontier enables us to probe BSM physics
- > Opportunities combining both high- (TeV) and low- (GeV) energy
- § Exciting era using LQCD for precision inputs from SM
 - > Increasing computational resources and improved algorithms
 - > Enables exploration of formerly impossible calculations
- § Necessary when experiment is limited
- § Bringing all systematics under control

